Программы. Советы. Безопасность. Интересное. Накопитель

Функции кэш памяти. Что такое кэш-память процессора? Зачем же нужен кэш процессору

Приветствуем вас на сайте GECID.com! Хорошо известно, что тактовая частота и количество ядер процессора напрямую влияют на уровень производительности, особенно в оптимизированных под многопоточность проектах. Мы же решили проверить, какую роль в этом играет кэш-память уровня L3?

Для исследования этого вопроса нам был любезно предоставлен интернет-магазином pcshop.ua 2-ядерный процессор с номинальной рабочей частотой 3,7 ГГц и 3 МБ кэш-памяти L3 с 12-ю каналами ассоциативности. В роли оппонента выступил 4-ядерный , у которого были отключены два ядра и снижена тактовая частота до 3,7 ГГц. Объем же кэша L3 у него составляет 8 МБ, и он имеет 16 каналов ассоциативности. То есть ключевая разница между ними заключается именно в кэш-памяти последнего уровня: у Core i7 ее на 5 МБ больше.

Если это ощутимо повлияет на производительность, тогда можно будет провести еще один тест с представителем серии Core i5, у которых на борту 6 МБ кэша L3.

Но пока вернемся к текущему тесту. Помогать участникам будет видеокарта и 16 ГБ оперативной памяти DDR4-2400 МГц. Сравнивать эти системы будем в разрешении Full HD.

Для начала начнем с рассинхронизированных живых геймплев, в которых невозможно однозначно определить победителя. В Dying Light на максимальных настройках качества обе системы показывают комфортный уровень FPS, хотя загрузка процессора и видеокарты в среднем была выше именно в случае Intel Core i7.

Arma 3 имеет хорошо выраженную процессорозависимость, а значит больший объем кэш-памяти должен сыграть свою позитивную роль даже при ультравысоких настройках графики. Тем более что нагрузка на видеокарту в обоих случаях достигала максимум 60%.

Игра DOOM на ультравысоких настройках графики позволила синхронизировать лишь первые несколько кадров, где перевес Core i7 составляет около 10 FPS. Рассинхронизация дельнейшего геймплея не позволяет определить степень влияния кэша на скорость видеоряда. В любом случае частота держалась выше 120 кадров/с, поэтому особого влияния даже 10 FPS на комфортность прохождения не оказывают.

Завершает мини-серию живых геймплеев Evolve Stage 2 . Здесь мы наверняка увидели бы разницу между системами, поскольку в обоих случаях видеокарта загружена ориентировочно на половину. Поэтому субъективно кажется, что уровень FPS в случае Core i7 выше, но однозначно сказать нельзя, поскольку сцены не идентичные.

Более информативную картину дают бенчмарки. Например, в GTA V можно увидеть, что за городом преимущество 8 МБ кэша достигает 5-6 кадров/с, а в городе - до 10 FPS благодаря более высокой загрузке видеокарты. При этом сам видеоускоритель в обоих случаях загружен далеко не на максимум, и все зависит именно от CPU.

Третий ведьмак мы запустили с запредельными настройками графики и высоким профилем постобработки. В одной из заскриптованных сцен преимущество Core i7 местами достигает 6-8 FPS при резкой смене ракурса и необходимости подгрузки новых данных. Когда же нагрузка на процессор и видеокарту опять достигают 100%, то разница уменьшается до 2-3 кадров.

Максимальный пресет графических настроек в XCOM 2 не стал серьезным испытанием для обеих систем, и частота кадров находилась в районе 100 FPS. Но и здесь больший объем кэш-памяти трансформировался в прибавку к скорости от 2 до 12 кадров/с. И хотя обоим процессорам не удалось по максимум загрузить видеокарту, вариант на 8 МБ и в этом вопросе местами преуспевал лучше.

Больше всего удивила игра Dirt Rally , которую мы запустили с пресетом очень высоко. В определенные моменты разница доходила до 25 кадров/с исключительно из-за большего объема кэш-памяти L3. Это позволяло на 10-15% лучше загружать видеокарту. Однако средние показатели бенчмарка показали более скромную победу Core i7 - всего 11 FPS.

Интересная ситуация получилась и с Rainbow Six Siege : на улице, в первых кадрах бенчмарка, преимущество Core i7 составляло 10-15 FPS. Внутри помещения загрузка процессоров и видеокарты в обоих случаях достигла 100%, поэтому разница уменьшилась до 3-6 FPS. Но в конце, когда камера вышла за пределы дома, отставание Core i3 опять местами превышало 10 кадров/с. Средний же показатель оказался на уровне 7 FPS в пользу 8 МБ кэша.

The Division при максимальном качестве графики также хорошо реагирует на увеличение объема кэш памяти. Уже первые кадры бенчмарка по полной загрузили все потоки Core i3, а вот общая нагрузка на Core i7 составляла 70-80%. Однако разница в скорости в эти моменты составляла всего 2-3 FPS. Чуть позже нагрузка на оба процессора достигла 100%, а разница в определенные моменты уже была за Core i3, но лишь на 1-2 кадра/с. В среднем же она составила около 1 FPS в пользу Core i7.

В свою очередь бенчмарк Rise of Tomb Rider при высоких настройках графики во всех трех тестовых сценах наглядно показал преимущество процессора с значительно большим объемом кэш памяти. Средние показатели у него на 5-6 FPS лучше, но если внимательно посмотреть каждую сцену, то местами отставание Core i3 превышает 10 кадров/с.

А вот при выборе пресета с очень высокими настройками возрастает нагрузка на видеокарту и процессоры, поэтому в большинстве своем разница между системами уменьшается до нескольких кадров. И лишь кратковременно Core i7 может показывать более значимые результаты. Средние показатели его преимущества по итогам бенчмарка снизились до 3-4 FPS.

Hitman также меньше подвержен влиянию кэш-памяти L3. Хотя и здесь при ультравысоком профиле детализации дополнительные 5 МБ обеспечили лучшую загрузку видеокарты, превратив это в дополнительные 3-4 кадра/с. Особо критичного влияния на производительность они не оказывают, но из чисто спортивного интереса приятно, что есть победитель.

Высокие настройки графики Deus ex: Mankind divided сразу же потребовали максимальной вычислительной мощности от обеих систем, поэтому разница в лучшем случае составляла 1-2 кадра в пользу Core i7, на что указывает и средний показатель.

Повторный запуск при ультравысоком пресете еще сильнее загрузил видеокарту, поэтому влияние процессора на общую скорость стало еще меньшим. Соответственно, разница в кэш-памяти L3 практически не влияла на ситуацию и средний FPS отличался менее чем на полкадра.

По итогам тестирования можно отметить, что влияние кэш-памяти L3 на производительность в играх действительно имеет место, но оно проявляется лишь тогда, когда видеокарта не загружена на полную мощность. В таких случаях можно было бы получить прирост в 5-10 FPS, если бы кэш увеличился в 2,5 раза. То есть ориентировочно получается, что при прочих равных каждый дополнительный МБ кэш-памяти L3 добавляет только 1-2 FPS к скорости отображения видеоряда.

Так что, если сравнивать соседние линейки, например, Celeron и Pentium, или модели с разным объем кэш-памяти L3 внутри серии Core i3, то основной прирост производительности достигается благодаря более высоким частотам, а потом и наличию дополнительных процессорных потоков и ядер. Поэтому, выбирая процессор, в первую очередь, все же, нужно ориентироваться на основные характеристики, а только потом обращать внимание на объем кэш-памяти.

На этом все. Спасибо за внимание. Надеемся, этот материал был полезным и интересным.

Статья прочитана 26737 раз(а)

Подписаться на наши каналы

Кэш память или как ее называют буферная память жесткого диска. Если вы не знаете что это, то мы с радостью ответим на данный вопрос и расскажем обо всех имеющихся особенностях. Это особый вид оперативки, выступающий в качестве буфера для хранения ранее считанных, но еще не переданных данных для их дальнейшей обработки, а также для хранения информации, к которой система обращается чаще всего.

Необходимость в транзитном хранилище появилась из-за значительной разницы между пропускной способности системы ПК и скорости считывания данных с накопителя. Также кэш-память можно встретить на других устройствах, а именно в видеокартах, процессорах, сетевых картах и прочих.

Какой бывает объем и на что он влияет

Отдельного внимания заслуживает объем буфера. Зачастую HDD оснащаются кэшем 8, 16, 32 и 64 Мб. При копировании файлов больших размеров между 8 и 16 Мб будет заметна значительная разница в плане быстродействия, однако между 16 и 32 она уже менее незаметна. Если выбирать между 32 и 64, то ее вообще почти не будет. Необходимо понимать, что буфер достаточно часто испытывает большие нагрузки, и в этом случае, чем он больше, тем лучше.

В современных жестких дисках используется 32 или 64 Мб, меньше на сегодняшний день вряд ли где-то можно найти. Для обычного пользователя будет достаточно и первого, и второго значения. Тем более что помимо этого на производительность также влияет размер собственного, встроенного в систему кэша. Именно он увеличивает производительность жесткого диска, особенно при достаточном объеме оперативки.

То есть, в теории, чем больше объем, тем лучше производительность и тем больше информации может находиться в буфере и не нагружать винчестер, но на практике все немного по-другому, и обычный пользователь за исключением редких случаев не заметит особой разницы. Конечно, рекомендуется выбирать и покупать устройства с наибольшим размером, что значительно улучшит работу ПК. Однако на такое следует идти только в том случае, если позволяют финансовые возможности.

Предназначение

Она предназначена для чтения и записи данных, однако на SCSI дисках в редких случаях необходимо разрешение на кэширование записи, так как по умолчанию установлено, что кэширование записи запрещено. Как мы уже говорили, объем – не решающий фактор для улучшения эффективности работы. Для увеличения производительности винчестера более важной является организация обмена информацией с буфером. Кроме этого, на нее также в полной мере влияет функционирование управляющей электроники, предотвращение возникновения и прочее.

В буферной памяти хранятся наиболее часто используемые данные, в то время как, объем определяет вместимость этой самой хранимой информации. За счет большого размера производительность винчестера возрастает в разы, так как данные подгружаются напрямую из кэша и не требуют физического чтения.

Физическое чтение – прямое обращение системы к жесткому диску и его секторам. Данный процесс измеряется в миллисекундах и занимает достаточно большое количество времени. Вместе с этим HDD передает данные более чем в 100 раз быстрее, чем при запросе путем физического обращения к винчестеру. То есть, он позволяет устройству работать даже если хост-шина занята.

Основные преимущества

Буферная память имеет целый ряд достоинств, основным из которых является быстрая обработка данных, занимающая минимальное количество времени, в то время как физическое обращение к секторам накопителя требует определенного времени, пока головка диска отыщет требуемый участок данных и начнет их читать. Более того, винчестеры с наибольшим хранилищем, позволяют значительно разгрузить процессор компьютера. Соответственно процессор задействуется минимально.

Ее также можно назвать полноценным ускорителем, так как функция буферизации делает работу винчестера значительно эффективнее и быстрее. Но на сегодняшний день, в условиях быстрого развития технологий, она теряет свое былое значение. Это связано с тем, что большинство современных моделей имеют 32 и 64 Мб, чего с головой хватает для нормального функционирования накопителя. Как уже было сказано выше, переплачивать разницу можно лишь тогда, когда разница по стоимости соответствует разнице в эффективности.

Напоследок хотелось бы сказать, что буферная память, какой бы она не была, улучшает работу той или иной программы, или устройства только в том случае, если идет многократное обращение к одним и тем же данным, размер которых не больше размера кэша. Если ваша работа за компьютером связана с программами, активно взаимодействующими с небольшими файлами, то вам нужен HDD с наибольшим хранилищем.

Как узнать текущий объем кэша

Все что нужно, это скачать и установить бесплатную программу HDTune . После запуска перейдите в раздел «Информация» и в нижней части окна вы увидите все необходимые параметры.


Если вы покупаете новое устройство, то все необходимые характеристики можно узнать на коробке или в приложенной инструкции. Еще один вариант – посмотреть в интернете.

Сегодняшняя статья не является самостоятельным материалом - она просто продолжает исследование производительности трех поколений архитектуры Core в равных условиях (начатое в конце прошлого года и продолженное недавно). Правда, сегодня мы сделаем небольшой шаг в сторону - часто́ты ядер и кэш-памяти останутся теми же, что и ранее, а вот емкость последней уменьшится. Зачем это нужно? Мы использовали «полный» Core i7 двух последних поколений для чистоты эксперимента, тестируя его с включенной и отключенной поддержкой технологии Hyper-Threading, поскольку вот уже полтора года как Core i5 снабжаются не 8, а 6 МиБ L3. Понятно, что влияние емкости кэш-памяти на производительность не так уж велико, как иногда принято считать, но оно есть, и никуда от него не деться. К тому же, Core i5 являются более массовыми продуктами, чем Core i7, а в первом поколении по этому параметру их никто «не обижал». Зато раньше их чуть ограничивали по-другому: тактовая частота UnCore в i5 первого поколения составляла всего 2,13 ГГц, так что наш «Nehalem» - это не совсем представитель 700-й линейки на частоте 2,4 ГГц, а немного более быстрый процессор. Однако сильно расширять список участников и переделывать условия тестирования мы сочли излишним - все равно, как мы уже не раз предупреждали, тестирования этой линейки никакой новой практической информации не несут: реальные процессоры работают совсем в других режимах. А вот желающим досконально разобраться во всех тонких моментах, как нам кажется, такое тестирование будет интересно.

Конфигурация тестовых стендов

Мы решили ограничиться всего четырьмя процессорами, причем главных участников будет два: оба четырехъядерных Ivy Bridge, но с разной емкостью кэш-памяти третьего уровня. Третий - «Nehalem HT»: в прошлый раз по итоговому баллу он оказался почти идентичен «Ivy Bridge просто». И «просто Nehalem» который, как мы уже сказали, чуть-чуть быстрее настоящего Core i5 первого поколения, работающего на частоте 2,4 ГГц (из-за того, напомним, что в 700-й линейке частота UnCore была немного ниже), но не слишком радикально. Зато и сравнение интересно: с одной стороны - два шага улучшения микроархитекутры, с другой - кэш-память ограничили. Априори можно предположить, что первое в большинстве случаев перевесит, но вот насколько и вообще - как сопоставимы «первые» и «третьи» i5 (с поправкой на частоту UnCore, конечно, хотя если будет много желающих увидеть абсолютно точное сравнение, мы и его потом сделаем) - уже хорошая тема для исследования.

Тестирование

Традиционно, мы разбиваем все тесты на некоторое количество групп и приводим на диаграммах средний результат по группе тестов/приложений (детально с методикой тестирования вы можете ознакомиться в отдельной статье). Результаты на диаграммах приведены в баллах, за 100 баллов принята производительность референсной тестовой системы сайт образца 2011 года. Основывается она на процессоре AMD Athlon II X4 620, ну а объем памяти (8 ГБ) и видеокарта () являются стандартными для всех тестирований «основной линейки» и могут меняться только в рамках специальных исследований. Тем, кто интересуется более подробной информацией, опять-таки традиционно предлагается скачать таблицу в формате Microsoft Excel , в которой все результаты приведены как в преобразованном в баллы, так и в «натуральном» виде.

Интерактивная работа в трёхмерных пакетах

Некоторое влияние емкости кэш-памяти есть, однако оно менее 1%. Соответственно, оба Ivy Bridge можно считать идентичными друг другу, ну а улучшения архитектуры позволяют новым Core i5 спокойно обгонять старые Core i7 точно также, как это делают новые Core i7.

Финальный рендеринг трёхмерных сцен

В данном случае, естественно, никакие усовершенствования не могут скомпенсировать увеличение количества обрабатываемых потоков, но сегодня для нас самым важным является не это, а полное отсутствие влияния емкости кэш-памяти на производительность. Вот Celeron и Pentium, как мы уже установили , разные процессоры, так что программы рендеринга чувствительны к емкости L3, однако лишь тогда, когда последнего мало. А 6 МиБ на четыре ядра, как видим, вполне достаточно.

Упаковка и распаковка

Естественно, эти задачи восприимчивы к емкости кэш-памяти, однако и здесь эффект от ее увеличения с 6 до 8 МиБ достаточно скромный: примерно 3,6%. Более интересно, на самом деле, сравнение с первым поколением - архитектурные улучшения позволяют новым i5 на равных частотах «громить» даже старые i7, но это в общем зачете: благодаря тому, что два теста из четырех однопоточные, а еще один двухпоточный. Сжатие данных силами 7-Zip, естественно, быстрее всего на «Nehalem HT»: восемь потоков всегда быстрее четырех сравнимой производительности. А вот если ограничиться всего четырьмя, то наш «Ivy Bridge 6М» проигрывает не только своему прародителю, но и старичку Nehalem: улучшения микроархитектуры полностью пасуют перед уменьшением емкости кэш-памяти.

Кодирование аудио

Несколько неожиданным оказался не размер разницы между двумя Ivy Bridge, а то, что она вообще есть. Правда настолько копеечная, что ее можно и на особенности округления или погрешности измерения списать.

Компиляция

Важны потоки, но важна и емкость кэш-памяти. Однако, как обычно, не слишком - порядка 1,5%. Более любопытно сравнение с первым поколением Core при отключенном Hyper-Threading: «по очкам» новенький Core i5 даже на равной частоте побеждает, но один из трех компиляторов (производства Microsoft, если быть точным) отработал на обоих процессорах за одинаковое время. Даже с преимуществом в 5 секунд у более старого - притом, что в этой программе у «полнокэшевого» Ivy Bridge результаты на 4 секунды лучше, чем у Nehalem. В общем, и здесь нельзя считать, что уменьшение емкости L3 как-то сильно повлияло на Core i5 второго и третьего поколения, но есть и нюансы.

Математические и инженерные расчёты

Опять менее 1% разницы со «старшим» кристаллом и опять убедительная победа над первым поколением во всех его видах. Что скорее правило, чем исключение для подобных малопоточных тестов, но почему бы в нем в очередной раз не убедиться? Особенно в таком вот рафинированном виде, когда (в отличие от тестов в штатном режиме) не мешает разница в частотах («стандартных» или появляющаяся из-за работы Turbo Boost).

Растровая графика

Но и при более полной утилизации многопоточности картина не всегда меняется. А емкость кэш-памяти не дает вовсе ничего.

Векторная графика

И здесь аналогично. Правда и потоков вычисления нужна всего парочка.

Кодирование видео

В отличие от этой группы, где, тем не менее, даже Hyper-Threading не позволяет Nehalem бороться на равных с последователями более новых поколений. А вот им не слишком мешает уменьшение емкости кэш-памяти. Точнее, практически вообще не мешает, поскольку разница опять менее 1%.

Офисное ПО

Как и следовало ожидать, никакого прироста производительности от увеличения емкости кэш-памяти (точнее, ее падения от уменьшения) нет. Хотя если посмотреть на подробные результаты, то видно, что единственный многопоточный тест этой группы (а именно распознавание текста в FineReader) выполняется примерно на 1,5% быстрее при 8 МиБ L3, нежели на 6 МиБ. Казалось бы - что такое 1,5%? С точки зрения практики - ничто. А вот с исследовательской точки зрения уже интересно: как видим, именно многопоточным тестам чаще всего не хватает кэш-памяти. В результате разница (пусть и небольшая) иногда находится даже там, где ее быть, вроде бы, не должно. Хотя ничего такого уж необъяснимого в этом нет - грубо говоря, в малопоточных тестах мы имеем 3-6 МиБ на поток, а вот в многопоточных там же получается 1,5 МиБ. Первого - много, а вот второго может оказаться и не совсем достаточно.

Java

Впрочем, Java-машина с такой оценкой не согласна, но и это объяснимо: как мы уже не раз писали, она очень хорошо оптимизирована вовсе не под х86-процессоры, а под телефоны и кофеварки, где ядер может быть много, но вот кэш-памяти очень мало. А иногда и ядер, и кэш-памяти мало - дорогие ресурсы как по площади кристалла, так и по энергопотреблению. И, если с ядрами и мегагерцами что-то сделать получается, то вот с кэшом все сложнее: в четырехъядерной Tegra 3 его, к примеру, всего 1 МиБ. Понятно, что JVM может «схрюпать» и больше (как и все системы с байт-кодом), что мы уже видели сравнивая Celeron и Pentium, но более 1,5 МиБ на поток ей если и может пригодиться, то не в тех задачах, которые вошли в SPECjvm 2008.

Игры

На игры у нас были большие надежды, поскольку к емкости кэш-памяти они нередко оказываются более требовательными чем даже архиваторы. Но бывает такое тогда, когда ее совсем мало, а 6 МиБ - как видим, достаточно. Да и, опять же, процессоры уровня четырехъядерных Core любых поколений даже на частоте 2,4 ГГц слишком мощное решение для используемых игровых приложений, так что узким местом явно будут не они, а прочие компоненты системы. Поэтому мы решили стряхнуть пыль с режимов с низким качеством графики - понятно, что для таких систем он слишком уж синтетичен, но у нас и все тестирование синтетическое:)

Когда не мешают всякие там видеокарты и прочее, разница между двумя Ivy Bridge достигает уже «безумных» 3%: и в этом случае можно не обращать внимания на практике, но для теории - немало. Больше вышло как раз только в архиваторах.

Многозадачное окружение

Где-то мы уже такое видели. Ну да - когда тестировали шестиядерные процессоры под LGA2011. И вот ситуация повторяется: нагрузка что ни на есть многопоточная, часть используемых программ до кэш-памяти «жадная», а вот ее увеличение только снижает среднюю производительность. Чем это можно объяснить? Разве что тем, что усложняется арбитраж и увеличивается количество промахов. Причем, заметим, происходит такое только тогда, когда емкость L3 относительно велика и одновременно работающих потоков вычисления не менее четырех - в бюджетном сегменте совсем другая картина. Во всяком случае, как показало наше недавнее тестирование Pentium и Celeron, для двухъядерных процессоров увеличение L3 с 2 до 3 МиБ добавляет 6% производительности. А вот четырех- и шестиядерным не дает, мягко говоря ничего. Даже менее, чем ничего.

Итого

Закономерный общий итог: поскольку нигде существенной разницы между процессорами с разным объемом L3 не обнаружилось, нет ее и в «общем и целом». Таким образом, расстраиваться по поводу уменьшения емкости кэш-памяти во втором и третьем поколении Core i5 поводов нет - предшественники первого поколения им все равно не конкуренты. Да и старые Core i7 в среднем тоже демонстрируют лишь аналогичный уровень производительности (разумеется, в основном за счет отставания в малопоточных приложениях - а так есть сценарии, с которыми в равных условиях они справляются быстрее). Но, как мы уже говорили, на практике реальные процессоры находятся далеко не в равных условиях по частотам, так что практическая разница между поколениями больше, чем можно получить в таких вот исследованиях.

Открытым остается лишь один вопрос: нам пришлось сильно снизить тактовую частоту для обеспечения равенства условий с первым поколением Core, но сохранятся ли замеченные закономерности в более близких к реальности условиям? Ведь из того, что четыре низкоскоростных потока вычислений не видят разницы между 6 и 8 МиБ кэш-памяти, не следует, что она не обнаружится в случае четырех высокоскоростных. Правда, не следует и обратного, так что для того, чтобы окончательно закрыть тему теоретических исследований, нам понадобится еще одна лабораторная работа, которой мы и займемся в следующий раз.

Кэш процессора - специальная память внутри процессора для ускорения обращения к оперативной памяти. Иногда кэш процессора называют сверхоперативной памятью, потому что доступ к ней происходит за очень маленькое время. Обычно кэш в процессорах делают на основе классических триггеров - так называемой статической памяти (SRAM). Для примера, оперативная память построена на основе конденсаторов, которые время от времени подзаряжаются. Тригеры обеспечивают практически мгновенный доступ к себе, но у них есть два главных недостатка:

  • относительно высокая стоимость изготовления
  • постоянное потребление энергии
  • Именно эти ограничения SRAM не позволяют делать на основе нее оперативную память.

    Уровни кэша процессора

    В современных процессорах кэш делится на несколько уровней

    Алгоритм работы кэш памяти

    Алгоритмом работы кэша управляет специальный контроллер, расположенный в процессоре. Он может динамически менять свою схему работы, в зависимости от обстоятельств. Но общий алгоритм кэша таков:

    Когда процессор делает запрос на чтение, контроллер кэша ищет значение в кэше и если оно найдено, отправляет его процессору. Если значение не найдено, то контроллер отправляет запрос дальше: или кэшу более низкого уровня, или в оперативную память. После чтения значения с более низкого уровня, кэш добавляет это значение себе и при следующем обращении - сразу отдаст его процессору.

    Когда процессор делает запрос на запись в оперативную память, то контроллер кэша обновляет значение у себя и передает его дальше - на более низкие уровни. В конце концов значение оказывается в оперативной памяти. По такому алгоритму обычно работает кэш на запись. Можно конечно сохранять значение только к кэше, но тогда остальные компоненты (например, DMA - прямой доступ к памяти) при доступе к оперативной памяти рискуют получить устаревшее значение.

    Частота работы кэш-памяти

    Поскольку SRAM память модут работать на очень болших частотах, кэш-память процессора обычно работает на той же частоте, что и сам процессор. Это дополнительно увеличивает скорость работы с этим видом памяти.

    Интеллектуальная кэш-память

    Современные кэш-контроллеры умеют угадывать, к каким ячейкам памяти процессор скоро обратиться и заранее загружает из в кэш. Например, если процессор обратился к ячейке 42, затем к 43, то высока вероятность того, что третье обращение будет к ячейке 44. Поэтому контроллер заранее загружает значение ячейки 44 себе в сверхбыструю память.

    Первый кэш

    Некоторое подобие кэша было еще в процессоре 8086. В нем было 6 байт кэша команд. Небольшое количество, без больших интеллектуальных способностей, но он значительно повышал быстродействие системы. Но настоящий кэш стал использоваться с процессором 80386. В те времена для обращения к оперативной памяти нужно было 120 нс времени. Но рядом с процессором ставили специальную микросхему кэш-памяти и доступ к ней просходил в 12 раз быстрее, чем к оперативной памяти. Но эта память (SRAM) была достаточно дорогой и ставить микросхему кэш памяти большого объема было нерентабельно. Поэтому первые кэши процессора были ограничены объемом 64 килобайт и устанавливались они отдельно. Начиная с процесора 80486 кэш процессора стал оправдывать свое название, потому что устанавливался прямо в процессоре.

    Место установки кэша

    Как уже было сказано выше, в процессоре 80386 не было внутреннего кэша. Кэш устанавливался отдельной микросхемой на материнской плате. В компьютерах на базе процессора 80486 как к прежде на материнской плате размещался кэш, но это был второй уровень. Первый уровень кэша устанавливался прямо в процессоре . С течением времени и развитием технологии изготовления микросхем кэш процессора полностью переехал в процессор, как и контроллер оперативной памяти.

    Кэш процессора является эффективным способом увеличить производительность процессора, за счет увеличения скорости работы с оперативной памятью .

    При выполнении различных задач в процессор вашего компьютера поступают необходимые блоки информации из оперативной памяти. Обработав их ЦП записывает полученные результаты вычислений в память и получает на обработку последующие блоки данных. Так продолжается до тех пор, пока поставленная задача не будет выполнена.

    Вышеупомянутые процессы производятся на очень большой скорости. Однако скорость даже самой быстрой оперативной памяти значительно меньше скорости любого слабого процессора. Каждое действие, будь то запись на неё информации или считывание с неё занимают много времени. Скорость работы оперативной памяти в десятки раз ниже скорости процессора.

    Не смотря на такую разницу в скорости обработки информации, процессор ПК не простаивает без дела и не ожидает, когда ОЗУ выдаст и примет данные. Процессор всегда работает и всё благодаря присутствию в нем кэш памяти.

    Кэш — особый вид оперативной памяти. Процессор использует память кэша для хранения тех копий информации из основной оперативной памяти компьютера, вероятность обращения к которым в ближайшее время очень велика.

    По сути кэш-память выполняет роль быстродействующего буфера памяти хранящего информацию, которая может потребоваться процессору. Таким образом процессор получает необходимые данные в десятки раз быстрее, чем при считывании их из оперативной памяти.

    Основным отличием кэш памяти от обычного буфера являются встроенные логические функции. В буфере хранятся случайные данные, которые как правило обрабатываются по схеме » получен первым, выдан первым» либо » получен первым, выдан последним». В кэш памяти содержатся данные, вероятность обращения к которым в ближайшее время очень велика. Поэтому благодаря «умному кэшу» процессор может работать с полной скоростью и не ожидать данные, извлекаемые из более медленной оперативной памяти.

    Основные типы и уровни кэш-памяти L1 L2 L3

    Кэш память выполнена в виде микросхем статической оперативной памяти (SRAM), которые устанавливаются на системной плате либо встроены в процессор. В сравнении с другими видами памяти, статическая память способна работать на очень больших скоростях.

    Скорость кэша зависит от объема конкретной микросхемы, Чем больше объем микросхемы, тем труднее добиться высокой скорости для её работы. Учитывая данную особенность, при изготовлении кэш память процессора выполняют в виде нескольких небольших блоков, именуемых уровнями. Самой распространенной на сегодняшний день считается трехуровневая система кеша L1,L2, L3:

    Кэш память первого уровня L1 — самая маленькая по объему (всего несколько десятков килобайт), но самая быстрая по скорости и наиболее важная. Она содержит данные наиболее часто используемые процессором и работает без задержек. Обычно количество микросхем памяти уровня L1 равно количеству ядер процессора, при этом каждое ядро получает доступ только к своей микросхеме L1.

    Кэш память уровня L2 по скорости уступает памяти L1, но выигрывает в объеме, который измеряется уже в нескольких сотнях килобайт. Она предназначена для временного хранения важной информации, вероятность обращения к которой ниже, чем у информации хранящейся в кэше L1.

    Третий уровень кэш памяти L3 — имеет самый большой объем из трех уровней (может достигать десятков мегабайт), но и обладает самой медленной скоростью, которая всё же значительно выше скорости оперативной памяти. Кэш память L3 служит общей для всех ядер процессора. Уровень памяти L3 предназначен для временного хранения тех важных данных, вероятность обращения к которым чуть ниже, чем у информации которая хранится в первых двух уровнях L1, L2. Она также обеспечивает взаимодействие ядер процессора между собой.

    Некоторые модели процессоров выполнены с двумя уровнями кэш памяти, в которых L2 совмещает все функции L2 и L3.

    Когда полезен большой объем кэша.

    Значительный эффект от большого объема кэша вы ощутите при использовании программ архиваторов, в 3D играх, во время обработки и кодирования видео. В относительно «легких» программах и приложениях разница практически не заметна (офисные программы, плееры и т.п).

    Похожие публикации