Программы. Советы. Безопасность. Интересное. Накопитель

Как исследовать график функции. Как исследовать функцию и построить её график? Теперь попробуем найти область значений функции

Решебник Кузнецова.
III Графики

Задание 7. Провести полное исследование функции и построить её график.

        Прежде, чем Вы начнёте скачивать свои варианты, попробуйте решить задачу по образцу, приведённому ниже для варианта 3. Часть вариантов заархивированы в формате.rar

        7.3 Провести полное исследование функции и построить её график

Решение.

        1) Область определения:         или        , то есть        .
.
Таким образом:         .

        2) Точек пересечения с осью Ox нет. Действительно, уравнение         не имеет решений.
Точек пересечения с осью Oy нет, так как        .

        3) Функция ни чётная, ни нечётная. Симметрии относительно оси ординат нет. Симметрии относительно начала координат тоже нет. Так как
.
Видим, что         и        .

        4) Функция непрерывна в области определения
.

; .

; .
Следовательно, точка         является точкой разрыва второго рода (бесконечный разрыв).

5) Вертикальные асимптоты:        

Найдём наклонную асимптоту        . Здесь

;
.
Следовательно, имеем горизонтальную асимптоту: y=0 . Наклонных асимптот нет.

        6) Найдём первую производную. Первая производная:
.
И вот почему
.
Найдём стационарные точки, где производная равна нулю, то есть
.

        7) Найдём вторую производную. Вторая производная:
.
И в этом легко убедится, так как

Построение графика функции по особенным точкам включает в себя исследование самой функции: определение области допустимых значений аргумента, определение области изменения функции, определение четности или нечетности функции, определение точек разрыва функции, нахождение интервалов знакопостоянства функции, нахождение асимптот графика функции. С помощью первой производной можно определить интервалы возрастания (убывания) функции, наличие точек экстремума. По второй производной можно определить интервалы выпуклости (вогнутости) графика функции, а также точки перегиба. При этом считаем, что если в некоторой точке xo касательная к графику функции выше кривой, то график функции в этой точке имеет выпуклость; если же касательная ниже кривой, то график функции в этой точке имеет вогнутость.

y(x) = x³/(x²+3)

1. Исследование функции.

а) Область допустимых значений аргумента: (-∞,+∞).

б) Область изменения функции: (-∞, +∞).

в) Функция является нечетной, т.к. y(-x) = -y(x), т.е. график функции симметричен относительно начала координат.

г) Функция является непрерывной, точек разрыва нет, следовательно, нет вертикальных асимптот.

д) Нахождение уравнения наклонной асимптоты y(x) = k∙x + b , где

k = /x и b =

В данном примере параметры асимптоты соответственно равны:

k = , т.к. старшая степень числителя и знаменателя одинаковые, равные трем, а отношение коэффициентов при этих старших степенях равно единице. При x→+ ∞ для вычисления предела использовали третий замечательный предел.

b = = = 0, при вычислении предела при x→+ ∞ воспользовались третьим замечательным пределом. Итак, график данной функции имеет наклонную асимптоту y=x.

2.

y´= /(x²+3)² - производная вычислена с помощью формулы дифференцирования частного.

а) Определяем нули производной и точки разрыва, приравнивая соответственно числитель и знаменатель производной нулю: y´=0, еслиx=0. Точек разрыва 1-я производная не имеет.

б) Определяем интервалы знакопостоянства производной, т.е. интервалы монотонности функции: при -∞производная положительна, следовательно, функция возрастает; при 0≤x<+∞, производная продолжает оставаться положительной, т.е. функция так же возрастает.

3. Исследование функции с помощью 2-ой производной.

Используя формулу дифференцирования частного и произведя алгебраические преобразования, полечим: y´´ = /(x²+3)³


а) Определяем нули 2-ой производной и интервалы знакопостоянства: y´´ = 0, если x=0 иx=+ 3 . Точек разрыва у 2-ой производной нет.

б) Определим интервалы закопостоянства 2-ой производной, т.е. интервалы выпуклости или вогнутости графика функции. При -∞и при0вторая производная y´´>0 , т.е. график функции вогнутый. При -3и при3вторая производная y´´<0, т.е. график функции выпуклый. Так как в точках x=0 и x=+ 3 вторая производная равна нулю, а ее знак меняется, то эти точки являются точками перегиба графика функции (рис.4).

Пример: исследовать функцию и построить ее график y(x)=((x-1)²∙(x+1))/x

1.Исследование функции.

а) Область допустимых значений: (-∞,0)U(0,+∞).

б) Область изменения функции: (-∞,+∞).

г) Данная функция имеет точку разрыва 2-ого рода при x=0.

д) Нахождение асимптот. Т.к. функция имеет точку разрыва 2-ого рода при x=0 , то следовательно, функция имеет вертикальную асимптоту x=0. Наклонных или горизонтальных асимптот данная функция не имеет.

2.Исследование функции с помощью 1-ой производной.

Преобразуем функцию, произведя все алгебраические действия. В результате вид функции значительно упростится: y(x)=x²-x-1+(1/x). От суммы слагаемых очень просто брать производную и получим: y´ = 2x – 1 –(1/x²).

а) Определяем нули и точки разрыва 1-ой производной. Приводим выражения для 1-ой производной к общему знаменателю и, приравняв числитель, а затем и знаменатель нулю, получим: y´=0 приx=1, y´ - не существуетприx=0.

б) Определим интервалы монотонности функции, т.е. интервалы знакопостоянства производной. При -∞<x<0 и0первая производнаяy´<0, следовательно, функция убывает. При 1≤x<∞ первая производнаяy´>0, следовательно, функция возрастает. В точке x=1 первая производная меняет знак с минуса на плюс, следовательно, в этой точке функция имеет минимум. Минимум пологий, т.к. при x=1 производнаяy´=0.

3.

y´´= 2 + 2/x³ . По 2-ой производной определим интервалы выпуклости или вогнутости графика функции, а также, если они имеются, точки перегиба. Приведем выражение для второй производной к общему знаменателю, а затем, приравнивая нулю поочередно числитель и знаменатель, получим: y´´=0 при x=-1, y´´- не существуетпри x=0.

При -∞и при 00 – график функции вогнутый. При -1≤x<0 – график функции выпуклый. Т.к. в точке x=-1 вторая производная меняет знак с плюса на минус, то точка x=-1 – точка перегиба графика функции (рис.5).

рис. 4 рис. 5

Пример: исследовать функцию и построить ее график y(x) = ln (x²+4x+5)

1.Исследование функции.

а) Область допустимых значений аргумента: логарифмическая функция существует только для аргументов строго больше нуля, следовательно, x²+4x+5>0 – это условие выполняется при всех значениях аргумента, т.е. О.Д.З. – (-∞, +∞).

б) Область изменения функции: (0, +∞). Преобразуем выражение, стоящее под знаком логарифма, и приравниваем функцию нулю: ln((x+2)²+1) =0. Т.е. функция обращается в ноль при x=-2. График функции будет симметричен относительно прямой x=-2.

в) Функция непрерывная, точек разрыва не имеет.

г) Асимптот у графика функции нет.

2.Исследование функции с помощью 1-ой производной.

Используя правило дифференцирования сложной функции, получим: y´= (2x+4)/(x²+4x+5)

а) Определим нули и точки разрыва производной: y´=0, при x=-2. Точек разрыва первая производная не имеет.

б) Определяем интервалы монотонности функции, т.е. интервалы знакопостоянства первой производной: при -∞<x<-2 производнаяy´<0, следовательно, функция убывает;при -2 производнаяy´>0, следовательно, функция возрастает. Так как производная в точке x=-2 меняет знак с минуса на плюс, то в этой точке функция имеет минимум (пологий).

3.Исследование функции по 2-ой производной.

Представим первую производную в следующем виде: y´=2∙(x+2)/(1+(x+2)²). y´´=2∙(1-(x+2)²/(1+(x+2)²)².

а) Определим интервалы знакопостоянства второй производной. Так как знаменатель 2-ой производной всегда неотрицателен, то знак второй производной определяется только числителем. y´´=0 при x=-3 иx=-1.

При -∞и при-1вторая производная y´´<0, следовательно, график функции на этих интервалах выпуклый. При -3вторая производная y´´>0, следовательно, график функции на этом интервале – вогнутый. Точки x=-3 и x=-1 – точки перегиба графика функции, т.к. в этих точках происходит перемена знаки второй производной, а сама вторая производная обращается в ноль (рис.6).

Пример: исследовать функцию и построить график y(x) = x²/(x+2)²

1.Исследование функции.

а) Область допустимых значений аргумента (-∞, -2)U(-2, +∞).

б) Область изменения функции ².

а) Определим нули и интервалы знакопостоянства второй производной. Т.к. знаменатель дроби всегда положителен, то знак второй производной полностью определяется числителем. При -∞и при-2вторая производнаяy´´>0 , следовательно, график функции на этих интервалах – вогнутый; при1≤x<+∞ вторая производная y´´<0 , следовательно, график функции на этом интервале имеет выпуклость. При переходе через точку x=1 , знак второй производной меняется с плюса на минус, т.е. эта точка является точкой перегиба графика функции. При x→+∞ график функции асимптотически приближается к своей горизонтальной асимптоте y=1 снизу. При x→ -∞ , график приближается к своей горизонтальной асимптоте сверху (рис.7).

Провести полное исследование и построить график функции

y(x)=x2+81−x.y(x)=x2+81−x.

1) Область определения функции. Так как функция представляет собой дробь, нужно найти нули знаменателя.

1−x=0,⇒x=1.1−x=0,⇒x=1.

Исключаем единственную точку x=1x=1 из области определения функции и получаем:

D(y)=(−∞;1)∪(1;+∞).D(y)=(−∞;1)∪(1;+∞).

2) Исследуем поведение функции в окрестности точки разрыва. Найдем односторонние пределы:

Так как пределы равны бесконечности, точка x=1x=1 является разрывом второго рода, прямая x=1x=1 - вертикальная асимптота.

3) Определим точки пересечения графика функции с осями координат.

Найдем точки пересечения с осью ординат OyOy, для чего приравниваем x=0x=0:

Таким образом, точка пересечения с осью OyOy имеет координаты (0;8)(0;8).

Найдем точки пересечения с осью абсцисс OxOx, для чего положим y=0y=0:

Уравнение не имеет корней, поэтому точек пересечения с осью OxOx нет.

Заметим, что x2+8>0x2+8>0 для любых xx. Поэтому при x∈(−∞;1)x∈(−∞;1) функция y>0y>0(принимает положительные значения, график находится выше оси абсцисс), при x∈(1;+∞)x∈(1;+∞) функция y<0y<0 (принимает отрицательные значения, график находится ниже оси абсцисс).

4) Функция не является ни четной, ни нечетной, так как:

5) Исследуем функцию на периодичность. Функция не является периодической, так как представляет собой дробно-рациональную функцию.

6) Исследуем функцию на экстремумы и монотонность. Для этого найдем первую производную функции:

Приравняем первую производную к нулю и найдем стационарные точки (в которых y′=0y′=0):

Получили три критические точки: x=−2,x=1,x=4x=−2,x=1,x=4. Разобьем всю область определения функции на интервалы данными точками и определим знаки производной в каждом промежутке:

При x∈(−∞;−2),(4;+∞)x∈(−∞;−2),(4;+∞) производная y′<0y′<0, поэтому функция убывает на данных промежутках.

При x∈(−2;1),(1;4)x∈(−2;1),(1;4) производная y′>0y′>0, функция возрастает на данных промежутках.

При этом x=−2x=−2 - точка локального минимума (функция убывает, а потом возрастает), x=4x=4 - точка локального максимума (функция возрастает, а потом убывает).

Найдем значения функции в этих точках:

Таким образом, точка минимума (−2;4)(−2;4), точка максимума (4;−8)(4;−8).

7) Исследуем функцию на перегибы и выпуклость. Найдем вторую производную функции:

Приравняем вторую производную к нулю:

Полученное уравнение не имеет корней, поэтому точек перегиба нет. При этом, когда x∈(−∞;1)x∈(−∞;1) выполняется y′′>0y″>0, то есть функция вогнутая, когда x∈(1;+∞)x∈(1;+∞) выполняется y′′<0y″<0, то есть функция выпуклая.

8) Исследуем поведение функции на бесконечности, то есть при .

Так как пределы бесконечны, горизонтальных асимптот нет.

Попробуем определить наклонные асимптоты вида y=kx+by=kx+b. Вычисляем значения k,bk,b по известным формулам:


Получили, у что функции есть одна наклонная асимптота y=−x−1y=−x−1.

9) Дополнительные точки. Вычислим значение функции в некоторых других точках, чтобы точнее построить график.

y(−5)=5.5;y(2)=−12;y(7)=−9.5.y(−5)=5.5;y(2)=−12;y(7)=−9.5.

10) По полученным данным построим график, дополним его асимптотами x=1x=1(синий), y=−x−1y=−x−1 (зеленый) и отметим характерные точки (фиолетовым пересечение с осью ординат, оранжевым экстремумы, черным дополнительные точки):

Задание 4: Геометрические, Экономические задачи(не имею понятия какие, тут примерная подборка задач с решением и формулами)

Пример 3.23. a

Решение. x и y y
y = a - 2×a/4 =a/2. Поскольку x = a/4 - единственная критическая точка, проверим, меняется ли знак производной при переходе через эту точку. При xa/4 S " > 0, а при x >a/4 S " < 0, значит, в точке x=a/4 функция S имеет максимум. Значение функции S(a/4) = a/4(a - a/2) = a 2 /8 (кв. ед).Поскольку S непрерывна на и ее значения на концах S(0) и S(a/2) равны нулю, то найденное значение будет наибольшим значением функции. Таким образом, наиболее выгодным соотношением сторон площадки при данных условиях задачи является y = 2x.

Пример 3.24.

Решение.
R = 2, Н = 16/4 = 4.

Пример 3.22. Найти экстремумы функции f(x) = 2x 3 - 15x 2 + 36x - 14.

Решение. Так как f " (x) = 6x 2 - 30x +36 = 6(x -2)(x - 3), то критические точки функции x 1 = 2 и x 2 = 3. Экстремумы могут быть только в этих точках. Так как при переходе через точку x 1 = 2 производная меняет знак плюс на минус, то в этой точке функция имеет максимум. При переходе через точку x 2 = 3 производная меняет знак минус на плюс, поэтому в точке x 2 = 3 у функции минимум. Вычислив значения функции в точках
x 1 = 2 и x 2 = 3, найдем экстремумы функции: максимум f(2) = 14 и минимум f(3) = 13.

Пример 3.23. Нужно построить прямоугольную площадку возле каменной стены так, чтобы с трех сторон она была отгорожена проволочной сеткой, а четвертой стороной примыкала к стене. Для этого имеется a погонных метров сетки. При каком соотношении сторон площадка будет иметь наибольшую площадь?

Решение. Обозначим стороны площадки через x и y . Площадь площадки равна S = xy. Пусть y - это длина стороны, примыкающей к стене. Тогда по условию должно выполняться равенство 2x + y = a. Поэтому y = a - 2x и S = x(a - 2x), где
0 ≤ x ≤ a/2 (длина и ширина площадки не могут быть отрицательными). S " = a - 4x, a - 4x = 0 при x = a/4, откуда
y = a - 2×a/4 =a/2. Поскольку x = a/4 - единственная критическая точка, проверим, меняется ли знак производной при переходе через эту точку. При xa/4 S " > 0, а при x >a/4 S " < 0, значит, в точке x=a/4 функция S имеет максимум. Значение функции S(a/4) = a/4(a - a/2) = a 2 /8 (кв. ед).Поскольку S непрерывна на и ее значения на концах S(0) и S(a/2) равны нулю, то найденное значение будет наибольшим значением функции. Таким образом, наиболее выгодным соотношением сторон площадки при данных условиях задачи является y = 2x.

Пример 3.24. Требуется изготовить закрытый цилиндрический бак вместимостью V=16p ≈ 50 м 3 . Каковы должны быть размеры бака (радиус R и высота Н), чтобы на его изготовление пошло наименьшее количество материала?

Решение. Площадь полной поверхности цилиндра равна S = 2pR(R+Н). Мы знаем объем цилиндра V = pR 2 Н Þ Н = V/pR 2 =16p/ pR 2 = 16/ R 2 . Значит, S(R) = 2p(R 2 +16/R). Находим производную этой функции:
S " (R) = 2p(2R- 16/R 2) = 4p (R- 8/R 2). S " (R) = 0 при R 3 = 8, следовательно,
R = 2, Н = 16/4 = 4.


Похожая информация.


Одной из важнейших задач дифференциального исчисления является разработка общих примеров исследования поведения функций.

Если функция y=f(x) непрерывна на отрезке , а ее производная положительна или равна 0 на интервале (a,b), то y=f(x) возрастает на (f"(x)0). Если функция y=f(x) непрерывна на отрезке , а ее производная отрицательна или равна 0 на интервале (a,b), то y=f(x) убывает на (f"(x)0)

Интервалы, в которых функция не убывает или не возрастает, называются интервалами монотонности функции. Характер монотонности функции может изменяться только в тех точках ее области определения, в которой меняется знак первой производной. Точки, в которых первая производная функции обращается в нуль или терпит разрыв, называются критическими.

Теорема 1 (1-ое достаточное условие существования экстремума).

Пусть функция y=f(x) определена в точке х 0 и пусть существует окрестность δ>0 такое, что функция непрерывна на отрезке , дифференцируема на интервале (x 0 -δ,x 0)u(x 0 , x 0 +δ), причем ее производная сохраняет постоянный знак на каждом из этих интервалов. Тогда если на x 0 -δ,x 0) и (x 0 , x 0 +δ) знаки производной различны, то х 0 - точка экстремума, а если совпадают, то х 0 - не является точкой экстремума. При этом если при переходе через точку х0, производная меняет знак с плюса на минус (слева от х 0 выполняется f"(x)>0, то х 0 - точка максимума; если же производная меняет знак с минуса на плюс (справа от х 0 выполняется f"(x)<0, то х 0 - точка минимума.

Точки максимума и минимума называют точками экстремума функции, а максимумы и минимумы функции – ее экстремальными значениями.

Теорема 2 (необходимый признак локального экстремума).

Если функция y=f(x) имеет в токе x=x 0 экстремум, то либо f’(x 0)=0, либо f’(x 0) не существует.
В точках экстремума дифференцируемой функции касательная к ее графику параллельна оси Ox.

Алгоритм исследования функции на экстремум:

1)Найти производную функции.
2)Найти критические точки, т.е. точки, в которых функция непрерывна, а производная равна нулю или не существует.
3)Рассмотреть окрестность каждой из точек, и исследовать знак производной слева и справа от этой точки.
4)Определить координаты экстремальных точек, для этого значения критических точек подставить в данную функцию. Используя достаточные условия экстремума, сделать соответствующие выводы.

Пример 18. Исследовать на экстремум функцию у=х 3 -9х 2 +24х

Решение.
1) y"=3x 2 -18x+24=3(x-2)(x-4).
2) Приравняв производную нулю, находим x 1 =2, x 2 =4. В данном случае производная определена всюду; значит, кроме двух найденных точек, других критических точек нет.
3) Знак производной y"=3(x-2)(x-4) изменяется в зависимости от промежутка так, как показано на рисунке 1. При переходе через точку x=2, производная меняет знак с плюса на минус, а при переходе через точку x=4 - с минуса на плюс.
4) В точке x=2 функция имеет максимум y max =20, а в точке x=4 - минимум y min =16.

Теорема 3. (2-ое достаточное условие существование экстремума).

Пусть f"(x 0) и в точке х 0 существует f""(x 0). Тогда если f""(x 0)>0, то х 0 – точка минимума, а если f""(x 0)<0, то х 0 – точка максимума функции y=f(x).

На отрезке функция y=f(x) может достигать наименьшего (у наим) или наибольшего (у наиб) значения либо в критических точках функции, лежащих в интервале (а;b), либо на концах отрезка .

Алгоритм отыскания наибольшего и наименьшего значений непрерывной функции y=f(x) на отрезке :

1) Найти f"(x).
2) Найти точки, в которых f"(x)=0 или f"(x) - не существует, и отобрать из них те, которые лежат внутри отрезка .
3) Вычислите значение функции y=f(x) в точках, полученных в п.2), а так же на концах отрезка и выбрать из них наибольшее и наименьшее: они и являются соответственно наибольшим (у наиб) и наименьшим (у наим) значениями функции на отрезке .

Пример 19. Найти наибольшее значение непрерывной функции y=x 3 -3x 2 -45+225 на отрезке .

1) Имеем y"=3x 2 -6x-45 на отрезке
2) Производная y" существует при всех х. Найдем точки, в которых y"=0; получим:
3x 2 -6x-45=0
x 2 -2x-15=0
x 1 =-3; x 2 =5
3) Вычислим значение функции в точках x=0 y=225, x=5 y=50, x=6 y=63
Отрезку принадлежит лишь точка x=5. Наибольшим из найденных значений функции является 225, а наименьшим – число 50. Итак, у наиб =225, у наим =50.

Исследование функции на выпуклости

На рисунке изображены графики двух функций. Первый из них обращен выпуклостью вверх, второй – выпуклостью вниз.

Функция y=f(x) непрерывна на отрезке и дифференцируема в интервале (а;b), называется выпуклой вверх (вниз) на этом отрезке, если при axb ее график лежит не выше (не ниже) касательной, проведенной в любой точке M 0 (x 0 ;f(x 0)), где axb.

Теорема 4. Пусть функция y=f(x) имеет вторую производную в любой внутренней точке х отрезка и непрерывна на концах этого отрезка. Тогда если на интервале (а;b) выполняется неравенство f""(x)0, то функция выпукла вниз на отрезке ; если на интервале (а;b) выполняется неравенство f""(x)0, то функция выпукла вверх на .

Теорема 5. Если функция y=f(x) имеет вторую производную на интервале (а;b) и если она меняет знак при переходе через точку x 0 , тогда M(x 0 ;f(x 0)) есть точка перегиба.

Правило нахождения точек перегиба:

1) Найти точки, в которых f""(x) не существует или обращается в нуль.
2) Исследовать знак f""(x) слева и справа от каждой найденной на первом шаге точки.
3) На основании теоремы 4 сделать вывод.

Пример 20. Найти точки экстремума и точки перегиба графика функции y=3x 4 -8x 3 +6x 2 +12.

Имеем f"(x)=12x 3 -24x 2 +12x=12x(x-1) 2 . Очевидно, что f"(x)=0 при x 1 =0, x 2 =1. Производная при переходе через точку x=0 меняет знак с минуса на плюс, а при переходе через точку x=1 не меняет знака. Значит, x=0 - точка минимума (у min =12), а в точке x=1 экстремума нет. Далее, находим . Вторая производная обращается в нуль в точках x 1 =1, x 2 =1/3. Знаки второй производной изменяются следующим образом: На луче (-∞;) имеем f""(x)>0, на интервале (;1) имеем f""(x)<0, на луче (1;+∞) имеем f""(x)>0. Следовательно, x= - точка перегиба графика функции (переход с выпуклости вниз на выпуклость вверх) и x=1 - так же точка перегиба (переход с выпуклости вверх на выпуклость вниз). Если x=, то y= ; если, то x=1, y=13.

Алгоритм отыскания асимптоты графика

I. Если y=f(x) при x → a , то x=a - есть вертикальная асимптота.
II. Если y=f(x) при x → ∞ или x → -∞ , тогда у=А - горизонтальная асимптота.
III. Для нахождения наклонной асимптоты используем следующий алгоритм:
1) Вычислить . Если предел существует и равен b, то y=b - горизонтальная асимптота; если , то перейти ко второму шагу.
2) Вычислить . Если этот предел не существует, то асимптоты нет; если он существует и равен k, то перейти к третьему шагу.
3) Вычислить . Если этот предел не существует, то асимптоты нет; если он существует и равен b, то перейти к четвертому шагу.
4) Записать уравнение наклонной асимптоты y=kx+b.

Пример 21: Найти асимптоту для функции

1)
2)
3)
4) Уравнение наклонной асимптоты имеет вид

Схема исследования функции и построение ее графика

I. Найти область определения функции.
II. Найти точки пересечения графика функции с осями координат.
III. Найти асимптоты.
IV. Найти точки возможного экстремума.
V. Найти критические точки.
VI. С помощью вспомогательного рисунка исследовать знак первой и второй производных. Определить участки возрастания и убывания функции, найти направление выпуклости графика, точки экстремумов и точек перегиба.
VII. Построить график, учитывая исследование, проведенное в п.1-6.

Пример 22: Построить по изложенной выше схеме график функции

Решение.
I. Областью определения функции является множество всех вещественных чисел, кроме x=1.
II. Так уравнение x 2 +1=0 не имеет вещественных корней, то график функции не имеет точек пересечения с осью Ох, но пересекает ось Оу в точке (0;-1).
III. Выясним вопрос о существовании асимптот. Исследуем поведение функции вблизи точки разрыва x=1. Так как y → ∞ при х → -∞, у → +∞ при х → 1+, то прямая x=1 является вертикальной асимптотой графика функции.
Если х → +∞(x → -∞), то у → +∞(y → -∞); следовательно, горизонтальной асимптоты у графика нет. Далее, из существования пределов

Решая уравнение x 2 -2x-1=0 получаем две точки возможного экстремума:
x 1 =1-√2 и x 2 =1+√2

V. Для нахождения критических точек вычислим вторую производную:

Так как f""(x) в нуль не обращается, то критических точек нет.
VI. Исследуем знак первой и второй производных. Точки возможного экстремума, подлежащие рассмотрению: x 1 =1-√2 и x 2 =1+√2, разделяют область существования функции на интервалы (-∞;1-√2),(1-√2;1+√2) и (1+√2;+∞).

В каждом из этих интервалов производная сохраняет знак: в первом – плюс, во втором – минус, в третьем – плюс. Последовательность знаков первой производной запишется так: +,-,+.
Получаем, что функция на (-∞;1-√2) возрастает, на (1-√2;1+√2) убывает, а на (1+√2;+∞) снова возрастает. Точки экстремума: максимум при x=1-√2, причем f(1-√2)=2-2√2 минимум при x=1+√2, причем f(1+√2)=2+2√2. На (-∞;1) график направлен выпуклостью вверх, а на (1;+∞) - вниз.
VII Составим таблицу полученных значений

VIII По полученным данным строим эскиз графика функции

Опорными точками при исследовании функций и построения их графиков служат характерные точки – точки разрыва, экстремума, перегиба, пересечения с осями координат. С помощью дифференциального исчисления можно установить характерные особенности изменения функций: возрастание и убывание, максимумы и минимумы, направление выпуклости и вогнутости графика, наличие асимптот.

Эскиз графика функции можно (и нужно) набрасывать уже после нахождения асимптот и точек экстремума, а сводную таблицу исследования функции удобно заполнять по ходу исследования.

Обычно используют следующую схему исследования функции.

1. Находят область определения, интервалы непрерывности и точки разрыва функции .

2. Исследуют функцию на чётность или нечётность (осевая или центральная симметрия графика.

3. Находят асимптоты (вертикальные, горизонтальные или наклонные).

4. Находят и исследуют промежутки возрастания и убывания функции, точки её экстремума.

5. Находят интервалы выпуклости и вогнутости кривой, точки её перегиба .

6. Находят точки пересечения кривой с осями координат, если они существуют.

7. Составляют сводную таблицу исследования.

8. Строят график, учитывая исследование функции, проведённое по вышеописанным пунктам.

Пример. Исследовать функцию

и построить её график.

7. Составим сводную таблицу исследования функции, куда внесём все характерные точки и интервалы между ними. Учитывая чётность функции, получаем следующую таблицу:

Особенности графика

[-1, 0[

Возрастает

Выпуклый

(0; 1) – точка максимума

]0, 1[

Убывает

Выпуклый

Точка перегиба, образует с осью Ox тупой угол

Похожие публикации